Generalized linear mixed model with bayesian rank likelihood
نویسندگان
چکیده
Abstract We consider situations where a model for an ordered categorical response variable is deemed necessary. Standard models may not be suited to perform this analysis, being that the marginal probability effects large extent are predetermined by rigid parametric structure. propose use rank likelihood approach in non Gaussian framework and show how additional flexibility can gained modeling individual heterogeneity terms of latent This avoids set specific link between observed categories quantities it discussed broadly general case longitudinal data. A real data example illustrated context sovereign credit ratings forecasting.
منابع مشابه
Bayesian Inference for Spatial Beta Generalized Linear Mixed Models
In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...
متن کاملMaximum Likelihood Estimation of Parameters in Generalized Functional Linear Model
Sometimes, in practice, data are a function of another variable, which is called functional data. If the scalar response variable is categorical or discrete, and the covariates are functional, then a generalized functional linear model is used to analyze this type of data. In this paper, a truncated generalized functional linear model is studied and a maximum likelihood approach is used to esti...
متن کاملGeneral Design Bayesian Generalized Linear Mixed Models
Linear mixed models are able to handle an extraordinary range of complications in regression-type analyses. Their most common use is to account for within-subject correlation in longitudinal data analysis. They are also the standard vehicle for smoothing spatial count data. However, when treated in full generality, mixed models can also handle spline-type smoothing and closely approximate krigi...
متن کاملBayesian inference for generalized linear mixed models.
Generalized linear mixed models (GLMMs) continue to grow in popularity due to their ability to directly acknowledge multiple levels of dependency and model different data types. For small sample sizes especially, likelihood-based inference can be unreliable with variance components being particularly difficult to estimate. A Bayesian approach is appealing but has been hampered by the lack of a ...
متن کاملLikelihood inference in generalized linear mixed measurement error models
The generalized linear mixed models (GLMMs) for clustered data are studied when covariates aremeasured with error. Themost conventional measurement error models are based on either linear mixed models (LMMs) or GLMMs. Even without the measurement error, the frequentist analysis of LMM, and particularly of GLMM, is computationally difficult. On the other hand, Bayesian analysis of LMM and GLMM i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistical Methods and Applications
سال: 2022
ISSN: ['1613-981X', '1618-2510']
DOI: https://doi.org/10.1007/s10260-022-00657-y